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a Ladder 

We study the asymptotic coverage of a lattice to which particles are randomly 
and irreversibly attached, under the constraint of nearest neighbor exclusion. 
After reviewing the case of a one-dimensional lattice, we extend the treatment 
first to a triangular ladder and then to a square ladder. The former maps onto 
a previously solved one-dimensional case, the latter does not. We also determine 
the time-dependent coverage of the square ladder. Implications as to the process 
on a full 2-dimensional square lattice are discussed. 

1. I N T R O D U C T I O N  

Random sequential adsorption (RSA) has been studied extensively because 
of its wide applicability to diverse aspects of physics, chemistry, biology, 
etc. (11 It is defined by a sequence of random placements of particles on a 
surface, a move being accepted if the particle does not fall into the geometric 
exclusion region of another particle (or with appropriate probability 
distribution for probabilistic acceptance(2)), else rejected. On the time scale 
considered, the process is irreversible--an accepted particle stays where it 
has fallen; various obvious reversible generalizations are of potential 
importance, (3) but will not be considered here. The process is normally 
imagined as starting with an empty surface. Since the placement is random, 
there will be a distribution of configurations at each time and a distribution 
of time-asymptotic final states. The question that one focuses on is the time 
dependence of the coverage--the mean particle density on the surface--and 
in particular the asymptotic coverage. The asymptotic state is not an 
eqilibrium state in the usual sense of the term, since one cannot test against 
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removal of particles--indeed, standard equilibrium would result in 
asymptotic close packing--and so the problem of finding it without the 
necessity of carrying out stochastic dynamics has received considerable 
attention. 

Various analytic solutions for both continuum and lattice versions of 
RSA have been found, starting with the elegant work of Flory, (4) but these 
have all been in one-dimensional space. They proceed by decomposing the 
system into unit configurations, whose statistics is assessed. For higher 
dimension, the class of unit configurations becomes enormous, and only 
numerical or approximate results are available. 15) In this note, we use 
similar techniques to extend the analytic results for RSA on a lattice space 
to the class of two-row ladders, a very modest entree into two-dimensional 
space, but with suggestive implications. The paper is organized as follows. 
In Section 2, we briefly recall Flory's approach, and then solve the 
asymptotic model for a finite triangular ladder. By mapping this onto a 
one-dimensional chain with next nearest neighbor exclusion, in the thermo- 
dynamic limit, we reproduce an earlier result given by Gonzalez et  al. (6) In 
Section 3, we do similar calculations for a square ladder, and then in 
Section 4 carry out the full time dependence with suitable rate equations. 
We conclude with a brief extension to a multirow ladder and a discussion 
of the implications of our results. 

2. T H E  T R I A N G U L A R  L A D D E R  

Flory's technique (4) for the direct evaluation of the asymptotic state, 
originally applied to the closely related problem of irreversible dimer 
packings, focuses on the iterative filling up of initially empty lattice regions. 
In particular, consider, for a nearest neighbor exclusion one-dimensional 
lattice, a segment of k > 2 unoccupied sites, say 1 ..... k, with sites 0 and 
k +  1 occupied, which on being filled to a "jammed" configuration (one 
to which no particle can be added) has on the average Ak vacant sites 
remaining. Clearly A1 = 1, A2 = 2. A particle dropped randomly will adhere 
with probability 1 / ( k  - 2) to one of the sites 2,..., k - 1. If this occurs at site 
j, there results an empty sublattice of j -  1 sites and one of k - j  sites. It 
follows that Ak = [ 1 / k -  2)] ~ ' - )  (A j_ 1 -~ Ak_j), or 

2 k 2 
Aj for k > 2  (2.1) A k = k - 2 j = l  

By mimicking Flory's analysis, or by generating function techniques (see 
later), it can be shown that 

1 k-1 ( _ 2 ) j  (2.2) 
A k  = A k  + l - A k  = 1 + - ~ j ~  j~ 

" = 1  
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and the thermodynamic limit of mean occupation density is given by 

p~ = 1 -  lim Ak=�89  -2) (2.3) 
k ~ o o  

We proceed next to the triangular ladder with nearest neighbor 
exclusion. A vacant strip of the ladder with k empty sites, terminated by 
occupied sites on both sides, is characterized by mean asymptotic vacancy 
number Ak, as illustrated in Fig. 1. For k > 4, an incoming particle can 
adhere with equal probability to any of k - 4 sites, in each case decomposing 
the region into two smaller vacant regions. Thus, 

A k = [ 1 / ( k - 4 ) ] [ ( A 2 + A k  3 ) + ( A 3 + A k  4)+ " " + ( A k  3+A2)]  
o r  

k - 3  

( k - 4 ) A k = 2  ~ Aj for k > 0  (2.4) 
j = 2  

with A 2 = 2, A 3 = 3, A 4 = 4. 
To solve (2.4), let us use the generating function approach. We define 

A(x)=  ~ Akx ~ 4 (2.5) 
k = 4  

multiply (2.4) by x k- 5, and sum over k, obtaining 

2x 2 2 
A'(x) = A(x) + (2 + 3x) 

1 - x  l - x  
(2.6) 

A ( 0 ) = 4  

The solution of (2.6) is readily found, 

A(x )=e  (2x+x2)(1-x) 2[4+2fo(1 -y ) (2+3y)e2y+Y2dy  I (2.7) 

But lim~ ~ ~ A~/k = lira x_ l(1 - x) 2 A(x), and so we have 

;ol p ~ =  1 - -4e -3 - -2  (1--y)(2+3y)e  y2+2y 3dy 

= f j  e y2 + 2y 3 dy (2.8) 

Fig. 1. 

A2 = 2  A3 =3  A4 = 4  As=4  

Low-o rde r  vacancy  regions  on the t r i angu la r  ladder.  
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Fig. 2. 

2 4 6 8 

1 3 5 7 

1 2 3 4 5 6 7 8  

M a p p i n g  of  the  t r i a n g u l a r  l a d d e r  on to  one  d imens ion .  

It is to be noted that (see Fig. 2) the nearest neighbor exclusion 
triangular ladder maps onto the nearest plus next nearest neighbor exclusion 
one-dimensional lattice, showing that our solution is directly related to the 
elegant work of Gonzalez eta/., (6) who also used a modified Flory technique 
to solve for the full stochastic dynamics. 

3. THE SQUARE LADDER 

The mapping just mentioned is not suitable for the square ladder, 
which must therefore be handled ab initio. Now again there are two types 
of termination of k-column empty strips: on the same row or on opposite 
rows, but here they can be associated with the same vacancy number (see 
Fig. 3). Since the asymptotic mean vacancy numbers Ak and Bk are not the 
same, the two types of configuration must be distinguished. However, the 
procedure is precisely as with the triangular ladder. Adding the separate 
contributions from occupying the lower j th  and upper j th  sites, the 
opposite site always remaining empty, we clearly have 

A k =  [ 1 / ( 2 k - 2 ) ] [ ( B k  1 + 1)+ (B 1 q -Ak_2+ 1)q- (A1 q-Bk_zq- 1)+ ..- 

+ (Ak-2-Ba + 1)+ (Bk_~ + 1)] 

A~ = 2 A z = 2 A~ = 4 

B~ = 1 B 2 = 3  B~ =7/2 

Fig.  3. L o w - o r d e r  v a c a n t  c o n f i g u r a t i o n  for  the s q u a r e  ladder .  
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o r  

Similarly, 

k 2 k - - I  

( k - 1 ) A k =  E Aj+ E Bj+k-1, k>~2 (3.1) 
j = l  j = l  

o r  

B k = [ 1 / ( 2 k - 2 ) ] [ ( A k _  I + I ) + ( B  l + B k  2 + I ) + ( A x + A ~ - 2 + I ) +  -.. 

-}- (Bk_2nt-B1 + 1 ) +  (Ak_ 1 -t- 1)] 

k 1 k - -2  

( k - 1 ) B k =  ~ Aj+ Z Bj+k-1, k>~2 (3.2) 
j = l  j = l  

Equations (3.1) and (3.2) can of course be solved by generating 
functions, but since it is not hard to do so directly, let us choose the latter 
route. To start with, set Ck = �89 + Bk), so that (3.1) and (3.2) combine to 

k- -2  

( k - 1 ) C k = 2  • Cj+Ck_,+k-1, 
j = l  

CI = 3/2 

k~>2 
(3.3) 

The thermodynamic limits of A~, Bk, and Ck are of course identical. Now 
subtract (3.3) at k from (3.3) at k +  1, giving 

kC, + 1 - -  k C k  - C ~ _  1 = 1, 

C1 = 23- , C 2  = 5  

k~>2 
(3.4) 

which can be extended to k>~0 by setting C 1 = - 1 .  Co=0.  Then 
introduce 

Ak = Ck-- Ck_ 1 (3.5) 

converting (3.4) to 

In the form 

kAk+l- (k- 1) A k - A k _ l  = 0  

do = 1, A1 = 3/2 
(3.6) 

1 
A k + j - A ~ =  - -~(Ak- -Ak 5) (3.7) 
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the solution is immediate: 

so that 

Since 
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1 ( - 1 )  k 
Ak+~--Ak=2 k! (3.8) 

1 k ( _ l ) j  

oE 

Ak . Ck 1 . 1 ( +  1 )  
limo~ ~-~=l~na ~-~=~l~rn  A k = ~  1 

  =l-lim 
~ - ~  2k = ~ee 

we conclude that 

(3.9) 

(3.1o) 

4. T I M E  E V O L U T I O N  O N  S Q U A R E  L A D D E R  

Now let us consider the RSA kinetics on an (infinite) square ladder. 
The corresponding calculation for triangular ladders can be found in ref. 6 
because of the mapping mentioned above. We will use a procedure analogous 
to that employed above for the asymptotic state, now defining uk(t) as the 
mean number of k-column gaps of type A per site at time t, and vk(t) for 
the B type. Clearly, uk decays by particle accretion to any of its 2 k - 2  
available sites, and similarly for vk, except that Vl has only one site 
available. Furthermore, uk is produced as a left or right fragment of any u a 
with j ~> k + 2 or any vj with j/> k + 1. Similarly, vk is produced from vj 
with j ~> k + 2 or uj with j >~ k + 1. We then have at once, under suitable 
scaling of time, 

duk=2 ~ v j+2  ~ uj--(2k--2)uk, k>l 
dt j = k + l  j = k + 2  

dvk=2 ~ u j + 2  ~ v,--(2k--2)vk, k>~2 (4.1) 
dt j ~ k + l  j = k + 2  

dvl=2 ~ uj+2 ~ vj-vl 
dt j ~ 2  j = 3  
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As initial conditions, we may choose 

u~(O) = 0 

but lim 
t-~'O k= K 

vk(O) = 0 

[uk(t) + v~( t )]2k  = 1 (4.2) 

for any finite lower bond K. 
The solution of (4.1), (4.2) is accomplished by extending the ansatz of 

Gonzalez et a/.(6): 

u k ( t ) = u ( t ) e - ( 2 k  2)t, k~>l 
(4.3) 

v k ( t ) = v ( t ) e  -(2k-2)t,  k>~2 

Equations (4.1) thereby reduce to 

u'(t) = 2u(t)/(e 2 ' -  1) + 2v ( t ) e -  27(e 2 ' -  1) 

v'(t) = 2v(t)/(e 2~ - 1) + 2u(t)e  27(e2' - 1 ) 
(4.4) 

It suffices to solve for w = u + v, which thereby satisfies 

w'(t) = 2w(t)(e --2,  _]_ 1 )/@2, _ 1 ) (4.5) 

having the solution 

w(t) = C(1 - e 2t)2 exp(e-2,) (4.6) 

To satisfy (4.2), we need 

o r  

lim ~ 2 k e - ( 2 k - 2 ) t C ( 1 - e  2')2exp(e-2') 
t ~ O k =  K 

= lim C(1 - - e - 2 t )  2 2(1 - e  2t)-2e= 1 
twO 

C = 1/2e (4.7) 

completing our solution. 
The mean coverage is of course given by 

1{ } 
p ( t ) = ~  1--2 [Uk( t )+vk( t ) ]  

k = l  
(4.8) 
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which is readily evaluated. In particular, if t ~ 0% 

1 
p(oo) = ~ [1 -- 2U1(O0)] 

2 1 -  

coinciding with our previous result. 

(4.9) 

5. D I S C U S S I O N  

The first observation we have from the present work is the reduction 
of the boundary effect when row number increases. It was noticed that the 
boundary effect of the 1D chain RSA model is very small and ten sites are 
enough to give very accurate results. (4'7) Now, comparing (2.2) with (3.9), 
one can see that a two-row ladder converges even more rapidly. If we 
consider the ladder as a lattice with two columns and infinite rows, we can 
reasonably expect the boundary effect to be even smaller and very few 
"columns," certainly less than ten, are required in order to mimic a full 2D 
square lattice. Notice that it is Ak rather than A k in (2.2) and (3.9) that 
leads to very rapid convergence: we correspondingly consider 

A 1 = 2p(two row) -- p(one row) 
(5.1) 

= � 8 9  2)=0.384 

tolerably close to the simulation result 0.364. (8) 
For  lattices with more than two rows, a single particle deposition may 

or may not break the strip, which is the key to ref. 4 and this work. 
Therefore, the present technique seems not easily extendable. However, 
there is one simple case, and it even has the required four neighbors--namely 
that of three rows with periodic boundary condition in the vertical 
direction. It is easy to see that all " jammed" configurations have precisely 
one occupied site per column, so that p = 1/3. But this is not yet close to 
the numerical result. It seems evident that techniques which can deal with 
the full lattice are required, and we will report one such possibility in a 
separate publication. 
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